Indexed by:
Abstract:
Simple, inexpensive, and rapid diagnostic tests in low-resource settings with limited laboratory equipment and technical expertise are instrumental in reducing morbidity and mortality from epidemic infectious diseases. We developed a smartphone-based fluorescent lateral flow immunoassay (LFIA) platform for the highly sensitive point-of-care detection of Zika virus nonstructural protein 1 (ZIKV NS1). An attachment was designed and 3D-printed to integrate the smartphone with external optical and electrical components, enabling the miniaturization of the instrument and reduction in cost and complexity. Quantum dot microspheres were utilized as probes in fluorescent LFIA because of their extremely bright fluorescence signal. This approach can achieve quantitative point-of-care detection of ZIKV NS1 within 20 min. Limits of detection (LODs) in buffer and serum were 0.045 and 0.15 ng mL(-1), respectively. Despite the high structural similarity, a high-level Dengue virus NS1 as interferent showed limited cross-reactivity. Furthermore, this assay was successfully applied to detecte ZIKV NS1 and virions spiked in complex biological samples, indicating its practical application capability. Given its low cost, compact size, and excellent analytical performance, the proposed smartphone-based fluorescent LFIA platform holds considerable potential in rapid and accurate point-of-care detection of ZIKV NS1 and provides new insight into the design and application of molecular diagnostic methods in low-resource settings. (C) 2018 Published by Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
ANALYTICA CHIMICA ACTA
ISSN: 0003-2670
Year: 2019
Volume: 1055
Page: 140-147
6 . 2 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:166
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 145
SCOPUS Cited Count: 155
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: