• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yu, Yutong (Yu, Yutong.) | Zhu, Qing (Zhu, Qing.)

收录:

EI Scopus

摘要:

This paper studies the parallel feature level fusion algorithm based on multiple dimension reduction. In view of the traditional serial and parallel feature fusion method shortcomings, this paper proposes a dimensionality reduction method for the feature vector using PCA (Principal Component Analysis) method before fusing the feature vector. In order to solve the high-dimensional problem after feature fusion, this paper puts forward a kind of generalized K-L transformation based on the unitary space to compress the dimension of fusion feature vector and remove redundant data. © 2016 ACM.

关键词:

Metadata Principal component analysis Robotics Support vector machines Vector spaces

作者机构:

  • [ 1 ] [Yu, Yutong]Beijing University of Technology, China
  • [ 2 ] [Zhu, Qing]Beijing University of Technology, China

通讯作者信息:

  • [yu, yutong]beijing university of technology, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2016

卷: 13-15-July-2016

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:204/3605138
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司