• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Guangheng (Jia, Guangheng.) | Li, Xiaoguang (Li, Xiaoguang.) | Zhuo, Li (Zhuo, Li.) | Liu, Li (Liu, Li.)

收录:

EI Scopus

摘要:

In face recognition, Low Resolution (LR) images will lead to the decline of the recognition rate. In this paper, we propose a novel recognition oriented feature hallucination method to map the features of a LR facial image to its High Resolution (HR) version. We extract the principal component analysis (PCA) features of LR and HR face images. Then, canonical correlation analysis is applied to establish the coherent subspaces between the PCA features of the LR and HR face images. Furthermore, a recognition rate guided prediction model is proposed to map the LR features to the HR version, which is employed an adaptive Piecewise Kernel Partial Least Squares (P-KPLS) predictor. Finally, a weighted combination of the hallucinated PCA features and the Local Binary Pattern Histogram (LBPH) features are adopted for face recognition. Experimental results show that the proposed method has a superior recognition rate. © Springer International Publishing AG 2016.

关键词:

Correlation methods Face recognition Image analysis Least squares approximations Principal component analysis

作者机构:

  • [ 1 ] [Jia, Guangheng]Signal and Information Processing Lab, Beijing University of Technology, Beijing, China
  • [ 2 ] [Li, Xiaoguang]Signal and Information Processing Lab, Beijing University of Technology, Beijing, China
  • [ 3 ] [Zhuo, Li]Signal and Information Processing Lab, Beijing University of Technology, Beijing, China
  • [ 4 ] [Liu, Li]Signal and Information Processing Lab, Beijing University of Technology, Beijing, China

通讯作者信息:

  • [li, xiaoguang]signal and information processing lab, beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 0302-9743

年份: 2016

卷: 9917 LNCS

页码: 275-284

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:90/3609755
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司