• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yingxin, Xing (Yingxin, Xing.) | Jinghua, Li (Jinghua, Li.) | Lichun, Wang (Lichun, Wang.) (学者:王立春) | Dehui, Kong (Dehui, Kong.) (学者:孔德慧)

收录:

EI Scopus

摘要:

Hand gesture plays an important role in nonverbal communication and natural human-computer interaction. However, the complex hand gesture structure and various environment factors lead to low recognition rate. For instance, hand gesture depends on individuals, and different individuals' hands are with different sizes and postures, in addition, unconstrained environmental illumination also influences hand gesture recognition performance. Therefore, hand gesture recognition is still a challenging issue. This paper proposes a robust method for hand gesture recognition based on convolutional neural network, which is utilized to automatically extract the spatial and semantic feature of hand gesture. Our method consists of a modified Convolutional Neural Network structure and data preprocessing, which corporately increase hand gesture recognition performance. The experimental results on both Cambridge Hand Gesture Dataset and self-constructed dataset show that the proposed method is effective and competitive. © 2016 IEEE.

关键词:

Convolution Convolutional neural networks Digital devices Edge detection Gesture recognition Human computer interaction Palmprint recognition Semantics

作者机构:

  • [ 1 ] [Yingxin, Xing]Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing, China
  • [ 2 ] [Jinghua, Li]Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing, China
  • [ 3 ] [Lichun, Wang]Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing, China
  • [ 4 ] [Dehui, Kong]Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2016

页码: 64-67

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:123/3603945
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司