• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Huang, Jiajin (Huang, Jiajin.) | Zhong, Ning (Zhong, Ning.)

收录:

EI Scopus

摘要:

Recommender systems aim to provide users with preferred items to tackle the information overload problem in the Web era. Social relations, item connections, and usergenerated reviews on items contain abundant potential information. By combining matrix factorization with latent Dirichlet allocation, we integrate ratings, reviews, user similarity and item similarity in recommender systems. The experimental result on a real-world dataset proves that both item connection and user connection contain useful sources for recommendation, and our model can effectively improve recommendation quality. © 2016 IEEE.

关键词:

Recommender systems Statistics Rating Reviews Factorization

作者机构:

  • [ 1 ] [Huang, Jiajin]International WIC Institute, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhong, Ning]International WIC Institute, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Zhong, Ning]Dept of Life Science and Informatics, Maebashi Institute of Technology, Maebashi-City; 371-0816, Japan

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2016

页码: 185-191

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:357/3900801
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司