• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Deng, Feng (Deng, Feng.) | Bao, Chang-Chun (Bao, Chang-Chun.) (学者:鲍长春) | Jia, Mao-Shen (Jia, Mao-Shen.)

收录:

EI Scopus

摘要:

In this paper, a hidden Markov model (HMM)-based cue parameters estimation method for single-channel speech enhancement is proposed, in which the cue parameters of binaural cue coding (BCC) are applied to single-channel speech enhancement system successfully. First, the clean speech and noise signals are considered as the left and right channels of stereo signal, respectively; and the noisy speech is treated as the down-mixed mono signal of BCC method. According to the clean speech and noise data set and the corresponding noisy speech data set, the clean cue parameters and pre-enhanced cue parameters are extracted, respectively. Then the cue HMM is trained offline, which exploits the a priori information about the clean cue parameters and the pre-enhanced cue parameters for speech enhancement. Next, using the trained cue HMM, the clean cue parameters are estimated from noisy speech online. Finally, following the synthesis principle of BCC cue parameters, the speech estimator is constructed for enhancing noisy speech. The test results demonstrate that, for the segmental signal-noise-ratio (SNR), the log spectral distortion and PESQ measures, the proposed method performs better than the reference methods. © 2016 IEEE.

关键词:

Speech enhancement Parameter estimation Signal to noise ratio Hidden Markov models

作者机构:

  • [ 1 ] [Deng, Feng]Speech and Audio Signal Processing Laboratory, School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Bao, Chang-Chun]Speech and Audio Signal Processing Laboratory, School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Jia, Mao-Shen]Speech and Audio Signal Processing Laboratory, School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2016

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:652/3904037
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司