• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Youjiao (Li, Youjiao.) | Zhuo, Li (Zhuo, Li.) | Hu, Xiaochen (Hu, Xiaochen.) | Zhang, Jing (Zhang, Jing.)

收录:

EI Scopus

摘要:

Person re-identification is one of the hot topics in computer vision. How to design a robust feature representation to identify pedestrians is a key problem for person reidentification. In this paper, a feature representation based on Multi-Statistics Cascade on Pyramid (MSCP) is proposed for person re-identification. The MSCP feature is composed of deep PCA network feature and hand-crafted features of Local Maximal Occurrence (LOMO) feature and color correlogram. MSCP can characterize the pedestrian images precisely from both global and local views. The Cross-view Quadratic Discriminant Analysis (XQDA) is employed to learn the distance metric of MSCP features. And then a novel re-identification method based on MSCP and XQDA is achieved. Experimental results on VIPeR Dataset demonstrate that our proposed method can achieve superior identification performance compared with six state-of-art methods. © 2016 IEEE.

关键词:

Discriminant analysis Arts computing Palmprint recognition

作者机构:

  • [ 1 ] [Li, Youjiao]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing, China
  • [ 2 ] [Li, Youjiao]Department of Computer Science and Technology, Shandong University of Technology, Zibo, China
  • [ 3 ] [Zhuo, Li]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing, China
  • [ 4 ] [Zhuo, Li]Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, China
  • [ 5 ] [Hu, Xiaochen]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing, China
  • [ 6 ] [Zhang, Jing]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2016

页码: 224-227

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:1108/4225585
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司