• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lu, Chao (Lu, Chao.) | Han, Honggui (Han, Honggui.) (学者:韩红桂) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Yang, Cuili (Yang, Cuili.)

收录:

EI Scopus

摘要:

Based on the systemic investigation of recurrent neural network, a self-organizing recurrent radial basis function (SR-RBF) neural network which based on the spiking mechanism and improved Levenberg-Marquardt (LM) algorithm is proposed in this paper. The hidden neuron in the recurrent radial basis function (RRBF) can be added or pruned by computing the spiking strength of the connections between hidden and output neurons of RRBF neural network. Meanwhile, to ensure the accuracy of SR-RBF neural network, the parameters are trained by improved LM algorithm. The SR-RBF neural network is used for approximating the time-series prediction and classical non-linear functions. Finally, comparisons with other methods demonstrate that the SR-RBF neural network is more effective in terms of accuracy, generalization, and network structure. © 2016 TCCT.

关键词:

作者机构:

  • [ 1 ] [Lu, Chao]College of Electronic and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Lu, Chao]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Han, Honggui]College of Electronic and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Han, Honggui]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Qiao, Junfei]College of Electronic and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Qiao, Junfei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 7 ] [Yang, Cuili]College of Electronic and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 8 ] [Yang, Cuili]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1934-1768

年份: 2016

卷: 2016-August

页码: 3624-3629

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:54/3267242
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司