• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Yanhui (Sun, Yanhui.) | Fang, Liying (Fang, Liying.) | Wang, Pu (Wang, Pu.)

收录:

EI Scopus

摘要:

The traditional k-means algorithm is often calculated according to the Euclidean distance. For longitudinal data it is unable to perform accurate and efficient computing. Based on extended Frobenius-norm (Efros) distance, in this study we proposed a method to improve the selection of initial centers for k-means clustering. This method can improve the traditional k-means clustering on longitudinal data. For missing longitudinal data, we first adopted a linear interpolation strategy to fill in missing values and then standardized the data, etc. Through comprehensive simulation studies, we demonstrate the power and effectiveness of our method by comparing the similarity within and between the classes. The results of our experiments show that our method can cluster the longitudinal data more effectively. © 2016 IEEE.

关键词:

作者机构:

  • [ 1 ] [Sun, Yanhui]College of Electronic and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Sun, Yanhui]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 3 ] [Sun, Yanhui]Beijing Laboratory for Urban Mass Transit, Beijing; 100124, China
  • [ 4 ] [Fang, Liying]College of Electronic and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Fang, Liying]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 6 ] [Fang, Liying]Beijing Laboratory for Urban Mass Transit, Beijing; 100124, China
  • [ 7 ] [Wang, Pu]College of Electronic and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 8 ] [Wang, Pu]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 9 ] [Wang, Pu]Beijing Laboratory for Urban Mass Transit, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2016

页码: 3853-3856

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:418/3908123
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司