• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuqing, Sun (Yuqing, Sun.) | Junfei, Qiao (Junfei, Qiao.) (学者:乔俊飞) | Honggui, Han (Honggui, Han.) (学者:韩红桂)

收录:

EI Scopus

摘要:

Aiming at the disadvantages of the traditional K-means clustering algorithm, a new algorithm based on density is proposed to remove the noises and outliers in this paper. This algorithm determines whether a point is a noise or not according to the density of the point. Experiments show that this algorithm can effectively eliminate the influence of the noises when the K-means algorithm searches cluster centers in the samples. Then the subtractive clustering algorithm is used to initialize the clustering centers of the K-means algorithm, meanwhile the number of cluster centers is gotten. The improved K-means algorithm is taken to optimize the structure of RBF neural network, and the results of experiments on the typical function approximation show that the proposed algorithm has the better approximation ability. © 2016 IEEE.

关键词:

作者机构:

  • [ 1 ] [Yuqing, Sun]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 2 ] [Junfei, Qiao]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Honggui, Han]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2016

页码: 7035-7040

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:961/3706126
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司