• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Xu (Zhao, Xu.) | Zhang, Zhongxian (Zhang, Zhongxian.) | Cheng, Weihu (Cheng, Weihu.) (学者:程维虎) | Zhang, Pengyue (Zhang, Pengyue.)

收录:

Scopus SCIE

摘要:

Techniques used to analyze exceedances over a high threshold are in great demand for research in economics, environmental science, and other fields. The generalized Pareto distribution (GPD) has been widely used to fit observations exceeding the tail threshold in the peaks over threshold (POT) framework. Parameter estimation and threshold selection are two critical issues for threshold-based GPD inference. In this work, we propose a new GPD-based estimation approach by combining the method of moments and likelihood moment techniques based on the least squares concept, in which the shape and scale parameters of the GPD can be simultaneously estimated. To analyze extreme data, the proposed approach estimates the parameters by minimizing the sum of squared deviations between the theoretical GPD function and its expectation. Additionally, we introduce a recently developed stopping rule to choose the suitable threshold above which the GPD asymptotically fits the exceedances. Simulation studies show that the proposed approach performs better or similar to existing approaches, in terms of bias and the mean square error, in estimating the shape parameter. In addition, the performance of three threshold selection procedures is assessed by estimating the value-at-risk (VaR) of the GPD. Finally, we illustrate the utilization of the proposed method by analyzing air pollution data. In this analysis, we also provide a detailed guide regarding threshold selection.

关键词:

parameter estimation generalized Pareto distribution peaks over threshold extreme values threshold

作者机构:

  • [ 1 ] [Zhao, Xu]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Zhongxian]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Cheng, Weihu]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Pengyue]Ohio State Univ, Coll Med, Dept Biomed Informat, Columbus, OH 43210 USA

通讯作者信息:

  • [Zhao, Xu]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

MATHEMATICS

年份: 2019

期: 5

卷: 7

2 . 4 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:54

JCR分区:1

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:294/3910515
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司