• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Xiang (Zhang, Xiang.) | Zhang, Xinfeng (Zhang, Xinfeng.) | Wang, Bo Chao (Wang, Bo Chao.) | Hu, Guangqin (Hu, Guangqin.)

收录:

EI Scopus

摘要:

In the paper, we present a method for evaluating the quality of tongue images in Traditional Chinese Medicine (TCM). First, we preprocess the original images to segment the tongue images. Second, geometric features, texture features and spectral entropy features and spatial entropy features based on Spatial-Spectral Entropy-based Quality (SSEQ) index of tongue images are extracted respectively to form 17 dimensional feature vector for the tongue image quality assessment. Finally, Support vector machine (SVM) model is used to classify the samples. The experimental result shows that our method has a better effect on the tongue image quality assessment for the objectification of tongue diagnosis. © 2016 IEEE.

关键词:

Biomedical engineering Diagnosis Entropy Feature extraction Image quality Image segmentation Spectrum analysis Support vector machines Textures

作者机构:

  • [ 1 ] [Zhang, Xiang]College of Electronic and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 2 ] [Zhang, Xiang]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 3 ] [Zhang, Xinfeng]College of Electronic and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 4 ] [Zhang, Xinfeng]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 5 ] [Wang, Bo Chao]College of Electronic and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 6 ] [Wang, Bo Chao]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 7 ] [Hu, Guangqin]College of Electronic and Control Engineering, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2016

页码: 640-644

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:106/3604080
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司