• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qi, Guanglei (Qi, Guanglei.) | Sun, Yanfeng (Sun, Yanfeng.) (学者:孙艳丰) | Gao, Junbin (Gao, Junbin.) | Hu, Yongli (Hu, Yongli.) (学者:胡永利) | Li, Jinghua (Li, Jinghua.)

收录:

EI Scopus

摘要:

Restricted Boltzmann Machine (RBM) is an important generative model modeling vectorial data. While applying an RBM in practice to images, the data have to be vectorized. This results in high-dimensional data and valuable spatial information has got lost in vectorization. In this paper, a Matrix-Variate Restricted Boltzmann Machine (MVRBM) model is proposed by generalizing the classic RBM to explicitly model matrix data. In the new RBM model, both input and hidden variables are in matrix forms which are connected by bilinear transforms. The MVRBM has much less model parameters while retaining comparable performance as the classic RBM. The advantages of the MVRBM have been demonstrated on three real-world applications: handwritten digit denoising, reconstruction and recognition. © 2016 IEEE.

关键词:

Character recognition Clustering algorithms Feature extraction Learning systems Matrix algebra

作者机构:

  • [ 1 ] [Qi, Guanglei]Beijing Key Laboratory of Multimedia and Intelligent Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Sun, Yanfeng]Beijing Key Laboratory of Multimedia and Intelligent Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Gao, Junbin]School of the University of Sydney Business School, University of Sydney, NSW; 2006, Australia
  • [ 4 ] [Hu, Yongli]Beijing Key Laboratory of Multimedia and Intelligent Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Li, Jinghua]Beijing Key Laboratory of Multimedia and Intelligent Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2016

卷: 2016-October

页码: 389-395

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:112/3602012
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司