首页>成果

  • 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

[期刊论文]

An Improved Particle Swarm Optimization Algorithm with Adaptive Inertia Weights

分享
编辑 删除 报错

作者:

Li, Mi (Li, Mi.) (学者:栗觅) | Chen, Huan (Chen, Huan.) | Wang, Xiaodong (Wang, Xiaodong.) | 展开

收录:

EI Scopus SCIE

摘要:

The particle swarm optimization (PSO) algorithm is simple to implement and converges quickly, but it easily falls into a local optimum; on the one hand, it lacks the ability to balance global exploration and local exploitation of the population, and on the other hand, the population lacks diversity. To solve these problems, this paper proposes an improved adaptive inertia weight particle swarm optimization (AIWPSO) algorithm. The AIWPSO algorithm includes two strategies: (1) An inertia weight adjustment method based on the optimal fitness value of individual particles is proposed, so that different particles have different inertia weights. This method increases the diversity of inertia weights and is conducive to balancing the capabilities of global exploration and local exploitation. (2) A mutation threshold is used to determine which particles need to be mutated. This method compensates for the inaccuracy of random mutation, effectively increasing the diversity of the population. To evaluate the performance of the proposed AIWPSO algorithm, benchmark functions are used for testing. The results show that AIWPSO achieves satisfactory results compared with those of other PSO algorithms. This outcome shows that the AIWPSO algorithm is conducive to balancing the abilities of the global exploration and local exploitation of the population, while increasing the diversity of the population, thereby significantly improving the optimization ability of the PSO algorithm.

关键词:

Particle swarm optimization adaptive inertia weight diversity mutation threshold mutation

作者机构:

  • [ 1 ] [Li, Mi]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 2 ] [Chen, Huan]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Xiaodong]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 4 ] [Zhong, Ning]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 5 ] [Lu, Shengfu]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Mi]Int Collaborat Base Brain Informat & Wisdom Serv, Beijing, Peoples R China
  • [ 7 ] [Chen, Huan]Int Collaborat Base Brain Informat & Wisdom Serv, Beijing, Peoples R China
  • [ 8 ] [Wang, Xiaodong]Int Collaborat Base Brain Informat & Wisdom Serv, Beijing, Peoples R China
  • [ 9 ] [Zhong, Ning]Int Collaborat Base Brain Informat & Wisdom Serv, Beijing, Peoples R China
  • [ 10 ] [Lu, Shengfu]Int Collaborat Base Brain Informat & Wisdom Serv, Beijing, Peoples R China
  • [ 11 ] [Zhong, Ning]Maebashi Inst Technol, 460 Kamisa Cho, Maebashi, Gunma 3700816, Japan

通讯作者信息:

  • 栗觅

    [Li, Mi]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China;;[Li, Mi]Int Collaborat Base Brain Informat & Wisdom Serv, Beijing, Peoples R China

查看成果更多字段

来源 :

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING

ISSN: 0219-6220

年份: 2019

期: 3

卷: 18

页码: 833-866

4 . 9 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:3

被引次数:

WoS核心集被引频次: 34

SCOPUS被引频次: 49

近30日浏览量: 1

归属院系:

在线人数/总访问数:202/4524536
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司