• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yan, Jianzhuo (Yan, Jianzhuo.) | Xu, Zongbao (Xu, Zongbao.) | Yu, Yongchuan (Yu, Yongchuan.) | Xu, Hongxia (Xu, Hongxia.) | Gao, Kaili (Gao, Kaili.)

收录:

Scopus SCIE

摘要:

Nowadays, freshwater resources are facing numerous crises and pressures, resulting from both artificial and natural process, so it is crucial to predict the water quality for the department of water environment protection. This paper proposes a hybrid optimized algorithm involving a particle swarm optimization (PSO) and genetic algorithm (GA) combined BP neural network that can predict the water quality in time series and has good performance in Beihai Lake in Beijing. The data sets consist of six water quality parameters which include Hydrogen Ion Concentration (pH), Chlorophyll-a (CHLA), Hydrogenated Amine (NH4H), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), and electrical conductivity (EC). The performance of the model was assessed through the absolute percentage error the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination. Study results show that the model based on PSO and GA to optimize the BP neural network is able to predict the water quality parameters with reasonable accuracy, suggesting that the model is a valuable tool for lake water quality estimation. The results show that the hybrid optimized BP model has a higher prediction capacity and better robustness of water quality parameters compared with the traditional BP neural network, the PSO-optimized BP neural network, and the GA-optimized BP neural network.

关键词:

water quality prediction particle swarm optimization BP neural network genetic algorithm

作者机构:

  • [ 1 ] [Yan, Jianzhuo]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Xu, Zongbao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yu, Yongchuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Xu, Hongxia]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Gao, Kaili]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Yan, Jianzhuo]Beijing Univ Technol, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 7 ] [Xu, Zongbao]Beijing Univ Technol, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 8 ] [Yu, Yongchuan]Beijing Univ Technol, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 9 ] [Xu, Hongxia]Beijing Univ Technol, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 10 ] [Gao, Kaili]Beijing Univ Technol, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China

通讯作者信息:

  • [Xu, Zongbao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Xu, Zongbao]Beijing Univ Technol, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

APPLIED SCIENCES-BASEL

年份: 2019

期: 9

卷: 9

2 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:2

被引次数:

WoS核心集被引频次: 50

SCOPUS被引频次: 61

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:312/3909308
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司