• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yu, Naigong (Yu, Naigong.) (学者:于乃功) | Jiao, Panna (Jiao, Panna.) | Zheng, Yuling (Zheng, Yuling.)

收录:

EI Scopus

摘要:

LeNet5 is a kind of Convolutional Neural Network (CNN) and has been used in handwritten digits recognition. In order to improve the recognition rate of LeNet5 in handwritten digits recognition, this article presents an improved LeNet5 by replacing the last two layers of the LeNet5 structure with Support Vector Machines (SVM) classifier. And LeNet5 performs as a trainable feature extractor and SVM works as a recognizer. To accelerate the network's convergence speed, the stochastic diagonal Levenberg-Marquardt algorithm is introduced to train the network. A series of studies has been conducted on the MINST digit database to test and evaluate the proposed method performance. The results show that this method can outperform both SVMs and LeNet5. Moreover, the improved method gets a faster convergence speed in training process. © 2015 IEEE.

关键词:

作者机构:

  • [ 1 ] [Yu, Naigong]Beijing University of Technology, Beijing, China
  • [ 2 ] [Jiao, Panna]Beijing University of Technology, Beijing, China
  • [ 3 ] [Zheng, Yuling]Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2015

页码: 4871-4875

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:512/4962900
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司