• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Ming (He, Ming.) | Zheng, Wei (Zheng, Wei.)

收录:

EI Scopus

摘要:

Document similarity computation is an exciting research topic in Information Retrieval (IR) and it is a key issue for automatic document categorization, clustering analysis, fuzzy query, and question answering. Topic model is an emerging field in Natural Language Processing (NLP), IR, and Machine Learning (ML). In this paper, we apply a Latent Dirichlet Allocation (LDA) topic model-based method to compute similarity between documents. By mapping a document with term space representation into a topic space, a distribution over topics is derived for computing document similarity. An empirical study using real data set demonstrates the efficiency of our method. © 2015 Taylor & Francis Group, London.

关键词:

Statistics Natural language processing systems

作者机构:

  • [ 1 ] [He, Ming]College of Computer Science, Beijing University of Technology, Beijing, China
  • [ 2 ] [Zheng, Wei]College of Computer Science, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2015

页码: 303-311

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:386/3890984
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司