• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Chao (Wang, Chao.) | Zhang, Jing (Zhang, Jing.) | Geng, Wenhao (Geng, Wenhao.) | Zhuo, Li (Zhuo, Li.)

收录:

EI Scopus

摘要:

With the development of remote sensing satellites, radar imaging, and unmanned aircraft, how to utilize the modern image processing technology to extract road network has been a hot research topic of remote sensing and geographic information technology. Therefore, a visual saliency based automatic road extraction method from high-resolution multispectral satellite images is proposed in this paper. Firstly, the color, intensity and orientation features are extracted to construct visual attention model for road saliency region detection. Then road network is extracted by adaptive region growing algorithm after automatically setting the pixels with larger saliency as seed points. At last, the non-road parts and noises are removed from road network by using morphological operations. The experimental results show that the proposed automatic road extraction method can achieve a superior performance in completeness and correctness than other traditional methods. © 2015 ACM.

关键词:

Behavioral research Extraction Feature extraction Image segmentation Mathematical morphology Remote sensing Roads and streets Satellites Visualization

作者机构:

  • [ 1 ] [Wang, Chao]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhang, Jing]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Geng, Wenhao]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Zhuo, Li]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Zhuo, Li]Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2015

卷: 2015-August

页码: 129-132

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:656/3557450
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司