• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Meng, Xi (Meng, Xi.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂)

收录:

EI Scopus

摘要:

A novel algorithm, bases on the adaptive resonance theory (ART), is proposed to design the structure of radial basis function (RBF) neural networks in this paper. Based on the concept of 'similarity', this proposed ART-like algorithm can be utilized to construct the RBF neural network. The number of the hidden nodes is able to be adjusted in the learning process. Meanwhile, the activity of each hidden node can be owned through the initial width design to make the structure compact. Finally, three examples are employed to test the effectiveness of the proposed ART-like RBF (ART-RBF) neural network. The results indicate that this ART-RBF neural network has better comparable generalization performance with compact structure and fast training time. © 2015 IEEE.

关键词:

Arts computing Functions Radial basis function networks

作者机构:

  • [ 1 ] [Meng, Xi]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligence System, Beijing, China
  • [ 2 ] [Qiao, Jun-Fei]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligence System, Beijing, China
  • [ 3 ] [Han, Hong-Gui]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligence System, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2015

卷: 2015-September

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:153/3603240
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司