Indexed by:
Abstract:
This paper proposes an improved non-dominated sorting genetic algorithm (NSGA2)-DNSGA2, with the aim of preserving diversity of obtained optimal solution and avoiding the original NSGA2 algorithm falling into local optimal. The proposed DNSGA2 algorithm which introduces a differential mutation operator to replace the original polynomial mutation because the method of differential local search is helpful to the uniformity of Pareto optimal solution set. The performance of the proposed DNSGA2, NSGA2 and W-LRCD-NSGA2 (Based on left-right crowding distance non-dominated sorting genetic algorithm) are compared via four benchmark functions. Simulation results indicate that the diversity and uniformity of Pareto optimal solution obtained by DNSGA2 are better than the other two algorithms. © 2015 Technical Committee on Control Theory, Chinese Association of Automation.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1934-1768
Year: 2015
Volume: 2015-September
Page: 2633-2638
Language: English
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: