• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Shen (Zhang, Shen.) | Zhao, Peixin (Zhao, Peixin.) | Li, Gaorong (Li, Gaorong.) (学者:李高荣) | Xu, Wangli (Xu, Wangli.)

收录:

Scopus SCIE

摘要:

In this paper, we propose a nonparametric independence screening method for sparse ultra-high dimensional generalized varying coefficient models with longitudinal data. Our methods combine the ideas of sure independence screening (SIS) in sparse ultrahigh dimensional generalized linear models and varying coefficient models with the marginal generalized estimating equation (GEE) method, called NIS-GEE, considering both the marginal correlation between response and covariates, and the subject correlation for variable screening. The corresponding iterative algorithm is introduced to enhance the performance of the proposed NIS-GEE method. Furthermore it is shown that, under some regularity conditions, the proposed NIS-GEE method enjoys the sure screening properties. Simulation studies and a real data analysis are used to assess the performance of the proposed method. (C) 2018 Elsevier Inc. All rights reserved.

关键词:

Sure screening properties Nonparametric independence screening Ultra-high longitudinal data Generalized estimating equation Generalized varying coefficient model

作者机构:

  • [ 1 ] [Zhang, Shen]Beijing Univ Technol, Beijing Inst Sci & Engn Comp, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Gaorong]Beijing Univ Technol, Beijing Inst Sci & Engn Comp, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Shen]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 4 ] [Zhao, Peixin]Chongqing Technol & Business Univ, Coll Math & Stat, Chongqing 400067, Peoples R China
  • [ 5 ] [Xu, Wangli]Renmin Univ China, Sch Stat, Ctr Appl Stat, Beijing 100872, Peoples R China

通讯作者信息:

  • [Zhao, Peixin]Chongqing Technol & Business Univ, Coll Math & Stat, Chongqing 400067, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF MULTIVARIATE ANALYSIS

ISSN: 0047-259X

年份: 2019

卷: 171

页码: 37-52

1 . 6 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:54

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:103/3907751
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司