收录:
摘要:
In this paper, we propose a nonparametric independence screening method for sparse ultra-high dimensional generalized varying coefficient models with longitudinal data. Our methods combine the ideas of sure independence screening (SIS) in sparse ultrahigh dimensional generalized linear models and varying coefficient models with the marginal generalized estimating equation (GEE) method, called NIS-GEE, considering both the marginal correlation between response and covariates, and the subject correlation for variable screening. The corresponding iterative algorithm is introduced to enhance the performance of the proposed NIS-GEE method. Furthermore it is shown that, under some regularity conditions, the proposed NIS-GEE method enjoys the sure screening properties. Simulation studies and a real data analysis are used to assess the performance of the proposed method. (C) 2018 Elsevier Inc. All rights reserved.
关键词:
通讯作者信息:
电子邮件地址: