• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Song, Xiangjing (Song, Xiangjing.) | Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Yang, Cuicui (Yang, Cuicui.) | Zhang, Xiuzhen (Zhang, Xiuzhen.)

收录:

EI Scopus

摘要:

Community structure detection in large-scale complex networks has been intensively investigated in recent years. In this paper, we propose a new framework which employs the ant colony clustering algorithm based on sampling to discover communities in large-scale complex networks. The algorithm firstly samples a small number of representative nodes from the large-scale network; secondly it uses the ant colony clustering algorithm to cluster the sampled nodes; thirdly it assigns the un-sampled nodes into the detected communities according to the similarity metric; finally it merges the initial clustering result to sustainably increase the modularity function value of the detection results. A significant advantage of our algorithm is that the sampling method greatly reduces the scale of the problem. Experimental results on computer-generated and real-world networks show the efficiency of our method. © 2014 IEEE.

关键词:

Ant colony optimization Clustering algorithms Complex networks

作者机构:

  • [ 1 ] [Song, Xiangjing]College of Computer Science, Beijing University of Technology, Beijing, China
  • [ 2 ] [Ji, Junzhong]College of Computer Science, Beijing University of Technology, Beijing, China
  • [ 3 ] [Yang, Cuicui]College of Computer Science, Beijing University of Technology, Beijing, China
  • [ 4 ] [Zhang, Xiuzhen]School of Computer Science and IT, RMIT University, Melbourne, Australia

通讯作者信息:

  • [song, xiangjing]college of computer science, beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2014

页码: 687-692

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:194/3606071
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司