• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Honggui (Han, Honggui.) (学者:韩红桂) | Wang, Lidan (Wang, Lidan.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Feng, Gang (Feng, Gang.)

收录:

EI Scopus

摘要:

In this paper, a spiking growing algorithm (SGA) is proposed for optimizing the structure of radial basis function (RBF) neural network. Inspired by the synchronous behavior of spiking neurons, the spiking strength (ss) of the hidden neurons is defined as the criteria of SGA, which investigates a new way to simulate the connections between hidden and output neurons of RBF neural network. This SGA-based RBF (SGA-RBF) neural network can self-organize the hidden neurons online, to achieve the appropriate network efficiency. Meanwhile, to ensure the accuracy of SGA-RBF neural network, the structure-adjusting and parameters-training phases are performed simultaneously. Simulation results demonstrate that the proposed method can obtain a higher precision in comparison with some other existing methods. © 2014 IEEE.

关键词:

Functions Radial basis function networks Nonlinear systems Neurons

作者机构:

  • [ 1 ] [Han, Honggui]College of Electronic and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 2 ] [Han, Honggui]Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
  • [ 3 ] [Wang, Lidan]College of Electronic and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 4 ] [Qiao, Junfei]College of Electronic and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 5 ] [Feng, Gang]Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
  • [ 6 ] [Feng, Gang]Nanjing University of Science and Technology, Nanjing; 210094, China

通讯作者信息:

  • 韩红桂

    [han, honggui]department of mechanical and biomedical engineering, city university of hong kong, kowloon, hong kong;;[han, honggui]college of electronic and control engineering, beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2014

页码: 3775-3782

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:226/3911579
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司