• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Duan, Lijuan (Duan, Lijuan.) (学者:段立娟) | Gu, Jili (Gu, Jili.) | Yang, Zhen (Yang, Zhen.) (学者:杨震) | Miao, Jun (Miao, Jun.) | Ma, Wei (Ma, Wei.) | Wu, Chunpeng (Wu, Chunpeng.)

收录:

EI Scopus

摘要:

In this paper, we present a saliency guided image object segment method. We suppose that saliency maps can indicate informative regions, and filter out background in images. To produce perceptual satisfactory salient objects, we use our bio-inspired saliency measure which integrating three factors: dissimilarity, spatial distance and central bias to compute saliency map. Then the saliency map is used as the importance map in the salient object segment method. Experimental results demonstrate that our method outperforms previous saliency detection method, yielding higher precision (0.7669) and better recall rates (0.825), F-Measure (0.7545), when evaluated using one of the largest publicly available data sets. © Springer International Publishing Switzerland 2014.

关键词:

Image segmentation Biomimetics Behavioral research

作者机构:

  • [ 1 ] [Duan, Lijuan]College of Computer Science and Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Gu, Jili]College of Computer Science and Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Yang, Zhen]College of Computer Science and Technology, Beijing University of Technology, Beijing, China
  • [ 4 ] [Miao, Jun]Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
  • [ 5 ] [Ma, Wei]College of Computer Science and Technology, Beijing University of Technology, Beijing, China
  • [ 6 ] [Wu, Chunpeng]Fujitsu Research and Development Center Co. Ltd, Beijing, China

通讯作者信息:

  • [miao, jun]key laboratory of intelligent information processing, institute of computing technology, chinese academy of sciences, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 2194-5357

年份: 2014

卷: 238

页码: 291-298

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:837/3906893
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司