• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Ping (Yang, Ping.) | Shi, Yunhui (Shi, Yunhui.) (学者:施云惠) | Ding, Wenpeng (Ding, Wenpeng.) | Sun, Xiaoyan (Sun, Xiaoyan.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus

摘要:

Conventional hierarchical image representation methods, e.g. Wavelet transform, use pre-determined filter banks which lack in adaption to the variant statistical characteristics of images. In this paper, we propose learning adaptive filter banks for hierarchical sparse image representation with a wavelet-like compact form using a deconvolutional network. The proposed scheme is verified by evaluating its sparsity in image representation. Experimental results demonstrate that the proposed scheme outperforms 9/7 and 5/3 wavelets transform in terms of both objective and subjective qualities under the same sparsity. © 2014 IEEE.

关键词:

Adaptive filtering Adaptive filters Convolution Filter banks Image coding Image compression Visual communication Wavelet transforms

作者机构:

  • [ 1 ] [Yang, Ping]Univ. Beijing Munic., Key Lab of Multimedia and Intelligent Software Technol. Coll. of Metropol. Transp., Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Shi, Yunhui]Internet Media Group, Microsoft Research Asia Microsoft Research Asia, Building 2, No. 5 Danling Street, Beijing; 100080, China
  • [ 3 ] [Ding, Wenpeng]Univ. Beijing Munic., Key Lab of Multimedia and Intelligent Software Technol. Coll. of Metropol. Transp., Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Sun, Xiaoyan]Univ. Beijing Munic., Key Lab of Multimedia and Intelligent Software Technol. Coll. of Metropol. Transp., Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Yin, Baocai]Univ. Beijing Munic., Key Lab of Multimedia and Intelligent Software Technol. Coll. of Metropol. Transp., Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2014

页码: 366-369

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:206/3608310
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司