• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Qiang (Ma, Qiang.) | Chen, Jiang-Chuan (Chen, Jiang-Chuan.) | Xu, Xiao-Yan (Xu, Xiao-Yan.) | Shao, Ya-Bin (Shao, Ya-Bin.)

收录:

EI Scopus

摘要:

In this paper, we propose an adaptive genetic algorithm based on a new entropy measurement, and deduce the limit of the selection probabilities of individuals under the entropy measurement. The theoretical analysis and a comparative experiment show that the new selection strategy based on the new entropy measurement can adjust dynamically the selection intensity according to the population state. The proposed method shifts dynamically the balance between the exploitation and exploration performance of genetic algorithms to enhance global optimal performance of algorithm. © 2014 IEEE.

关键词:

Genetic algorithms Machine learning Entropy

作者机构:

  • [ 1 ] [Ma, Qiang]Network Information Management Center, Northwest University for Nationalities, Lanzhou; 730030, China
  • [ 2 ] [Chen, Jiang-Chuan]GAN SU Institute of Urban Planning and Design, Lanzhou; 730000, China
  • [ 3 ] [Xu, Xiao-Yan]Multimedia and Intelligent Software Technology Beijing Municipal Key Laboratory, College of Computer Science, Beijing University of Technology, Beijing; 100022, China
  • [ 4 ] [Shao, Ya-Bin]School of Mathematics and Computer Science, Northwest University for Nationalities Lanzhou, Lanzhou; 730030, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 2160-133X

年份: 2014

卷: 1

页码: 169-174

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1354/4281699
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司