• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhu, Kexin (Zhu, Kexin.) | Yang, Jian (Yang, Jian.)

收录:

EI Scopus

摘要:

Feature selection is an effective machine learning method for reducing dimensionality, removing irrelevant features, increasing learning accuracy, and improving result comprehensibility. However, many existing feature selection methods are incapable for high dimensional data because of their high time complexity, especially wrapper feature selection algorithms. In this work, a fast sequential feature selection algorithm (AP-SFS) is proposed based on affinity propagation clustering. AP-SFS divides the original feature space into several subspaces by a cluster algorithm, then applies sequential feature selection for each subspace, and collects all selected features together. Experimental results on several benchmark datasets indicate that AP-SFS can be implemented much faster than sequential feature selection but has comparable accuracies. © 2013 IEEE.

关键词:

Clustering algorithms Feature extraction Learning systems

作者机构:

  • [ 1 ] [Zhu, Kexin]International WIC Institute, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Yang, Jian]International WIC Institute, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 2157-9555

年份: 2013

页码: 848-852

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:76/3600988
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司