• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Lingjun (Li, Lingjun.) | Zhou, Yihua (Zhou, Yihua.)

收录:

EI Scopus

摘要:

To improve the efficiency of image relevance feedback algorithm rapidly, an algorithm of auto-adapted weight revision combining with support vector machine is proposed. In early retrieval stage, the weight coefficients of different features are adjusted quickly by auto-adapted weight revision algorithm, using quick deletion strategy of negative samples to improve the accuracy of early retrieval stage, which providing more positive samples for the SVM models in later retrieval stage; In later retrieval period, retrieval models are designed by SVM models, and they are optimized by the algorithm of active learning and semi-supervision relevance feedback. Experiment results on 5000 Corel images database indicate that this algorithm can obviously improve the efficiency and performance of learning machine and accelerate the convergence to user's inquiry concept. © 2013 IEEE.

关键词:

Learning algorithms Machine learning Image enhancement Content based retrieval Efficiency Support vector machines

作者机构:

  • [ 1 ] [Li, Lingjun]College of Computer Science and Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Zhou, Yihua]College of Computer Science and Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2013

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:114/3918649
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司