• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xie, Tao (Xie, Tao.) | Yang, Jinfu (Yang, Jinfu.) (学者:杨金福) | Li, Mingai (Li, Mingai.) (学者:李明爱) | Zhao, Weiwei (Zhao, Weiwei.)

收录:

EI Scopus

摘要:

Place or scene recognition is an important competence of mobile robots for operating in a real dynamic environment. Latent Dirichlet Allocation (LDA), a popular probabilistic model, can achieve outstanding performance in image recognition, and it has been attracted the attention of a large number of researchers. Parameter estimation is a key step for the learning procedure of LDA. In this paper, we propose a novel place recognition approach based on LDA using Markov chain Monte Carlo (MCMC) for approximate inference technique. Firstly, the training images of each category are represented as a set of different themes. And MCMC is employed to estimate parameters of LDA instead of variational inference. Then an unknown test image can be recognized according to its themes distribution. Experimental results show that our method can perform better than the variational inference algorithm over IDOL2 database and our own image set captured under different imaging conditions in our campus. © 2013 IEEE.

关键词:

Biomimetics Image recognition Inference engines Markov processes Monte Carlo methods Robotics Statistics

作者机构:

  • [ 1 ] [Xie, Tao]Institute of Artificial Intelligence and Robotics, Beijing University of Technology, Beijing, CO 100124, China
  • [ 2 ] [Yang, Jinfu]Institute of Artificial Intelligence and Robotics, Beijing University of Technology, Beijing, CO 100124, China
  • [ 3 ] [Li, Mingai]Institute of Artificial Intelligence and Robotics, Beijing University of Technology, Beijing, CO 100124, China
  • [ 4 ] [Zhao, Weiwei]Institute of Artificial Intelligence and Robotics, Beijing University of Technology, Beijing, CO 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2013

页码: 2225-2230

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:126/3611826
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司