• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Zhen (Zhang, Zhen.) | Shi, Yunhui (Shi, Yunhui.) (学者:施云惠) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus

摘要:

Since Magnetic resonance(MR) Images commonly possess a blocky structure and have sparse representations under certain wavelet bases, total variation (TV) and wavelet domain 1 norm regularization are often enforced together (TV-wavelet method) to improve the recovery accuracy. However, this model ignores that a family of wavelet coefficients has a natural grouping of its components. In this paper, we propose a new TV-Group sparse model which combines TV and wavelet domain group sparse penalty. The corresponding algorithm based on composite splitting method is employed to approach this TV-Group sparse model. Experimental results show that our model can obviously improve both objective and subjective qualities of MR image recovery comparing with the TV-wavelet model. © 2013 IEEE.

关键词:

Image enhancement Magnetic resonance Image reconstruction Magnetic resonance imaging

作者机构:

  • [ 1 ] [Zhang, Zhen]College of Computer Science and Technology, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Shi, Yunhui]College of Computer Science and Technology, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Yin, Baocai]College of Computer Science and Technology, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 1945-7871

年份: 2013

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:892/3899093
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司