• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Guiyang (Wang, Guiyang.) | Zhang, Yating (Zhang, Yating.) | Wang, Ruihua (Wang, Ruihua.) | Han, Guang (Han, Guang.)

收录:

EI Scopus

摘要:

This paper describes an application of artificial neural networks (ANNs) based on improved Radial Basis Function (NNCA-RBF) to predict performance of a horizontal ground-coupled heat pump (GCHP) system. Performance forecasting is the precondition for the optimal control and energy saving operation of heat pump systems. ANNs have been used in varied applications and they have been shown to be particularly useful in system modeling and system identification. In this study NNCA-RBFNN predictions usually agree well with the experimental values with correlation coefficients in the range of 0.9967-0.9998, mean relative errors in the range of 1.02-4.83% and root mean square errors in the range of 0.0147-0.058. The NNCA-RBFNN approach shows high accuracy and reliability for predicting the performance of GCHP systems. © 2013 IEEE.

关键词:

Coefficient of performance Energy conservation Forecasting Geothermal heat pumps Mean square error Neural networks Pumps Radial basis function networks

作者机构:

  • [ 1 ] [Wang, Guiyang]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 2 ] [Zhang, Yating]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 3 ] [Wang, Ruihua]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 4 ] [Han, Guang]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2013

页码: 2164-2169

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1433/3638092
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司