• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Wenchao (Zhang, Wenchao.) | Li, Yafen (Li, Yafen.)

收录:

EI Scopus

摘要:

The C4.5 Algorithm can result in a thriving decision tree and will overfit the training data while training the model. In order to overcome those disadvantages, this paper proposed a post-pruning decision tree algorithm based on Bayesian theory, in which each branch of the decision tree generated by the C4.5 algorithm is validated by Bayesian theorem, and then those branches that do not meet the conditions will be removed from the decision tree, at last a simple decision tree will be generated. The proposed algorithm can be verified by the data provided by the Beijing key disciplines platform and the Beijing Master and Dr. Platform. The result shows that the algorithm can the most unreliable and uneven branches. And compared with the C4.5 algorithm, the proposed algorithm has a higher prediction accuracy and a broader coverage. © 2013 IEEE.

关键词:

Trees (mathematics) Computation theory Decision theory Data mining Decision trees

作者机构:

  • [ 1 ] [Zhang, Wenchao]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 2 ] [Li, Yafen]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2013

页码: 988-991

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:576/4289226
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司