• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Ruwei (Li, Ruwei.) | Sun, Xiaoyue (Sun, Xiaoyue.) | Liu, Yanan (Liu, Yanan.) | Yang, Dengcai (Yang, Dengcai.) | Dong, Liang (Dong, Liang.)

收录:

EI Scopus SCIE

摘要:

The performance of the existing speech enhancement algorithms is not ideal in low signal-to-noise ratio (SNR) non-stationary noise environments. In order to resolve this problem, a novel speech enhancement algorithm based on multi-feature and adaptive mask with deep learning is presented in this paper. First, we construct a new feature called multi-resolution auditory cepstral coefficient (MRACC). This feature which is extracted from four cochleagrams of different resolutions can capture the local information and spectrotemporal context and reduce the algorithm complexity. Second, an adaptive mask (AM) which can track noise change for speech enhancement is put forward. The AM can flexibly combine the advantages of an ideal binary mask (IBM) and an ideal ratio mask (IRM) with the change of SNR. Third, a deep neural network (DNN) architecture is used as a nonlinear function to estimate adaptive mask. And the first and second derivatives of MRACC and MRACC are used as the input of the DNN. Finally, the estimated AM is used to weight the noisy speech to achieve enhanced speech. Experimental results show that the proposed algorithm not only further improves speech quality and intelligibility, but also suppresses more noise than the contrast algorithms. In addition, the proposed algorithm has a lower complexity than the contrast algorithms.

关键词:

Adaptive mask Speech enhancement Multi-resolution auditory cepstral coefficient Deep neural network

作者机构:

  • [ 1 ] [Li, Ruwei]Beijing Univ Technol, Sch Informat & Commun Engn, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 2 ] [Sun, Xiaoyue]Beijing Univ Technol, Sch Informat & Commun Engn, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 3 ] [Liu, Yanan]Beijing Univ Technol, Sch Informat & Commun Engn, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 4 ] [Yang, Dengcai]Beijing Univ Technol, Sch Informat & Commun Engn, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 5 ] [Dong, Liang]Baylor Univ, Elect & Comp Engn, Waco, TX 76798 USA

通讯作者信息:

  • [Li, Ruwei]Beijing Univ Technol, Sch Informat & Commun Engn, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING

ISSN: 1687-6180

年份: 2019

1 . 9 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:181/4603299
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司