• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Pei (Zhang, Pei.) | Zhuo, Li (Zhuo, Li.) | Zhao, Yingdi (Zhao, Yingdi.) | Cheng, Bo (Cheng, Bo.) | Zhang, Jing (Zhang, Jing.) | Song, Xiaoqin (Song, Xiaoqin.)

收录:

EI Scopus

摘要:

Currently, the image retrieval methods focus on improving the retrieval performance, but ignoring preserving the problem of preserving privacy. Images contain a great deal of personal privacy information, and leakage of information will result in seriously negative effect. Ensuring the image retrieval performance while preserving the confidentiality of data has become the key issue in the field of image retrieval. Based on the Content-based Image Retrieval (CBIR), we propose a secure image retrieval scheme in the encrypted domain, where the encrypted features can be used in similarity comparison directly. This paper compares the ciphertext retrieval with plaintext retrieval to illustrate that the proposed scheme could achieve the comparable retrieval performance, while ensuring the image information security at the same time.

关键词:

Security of data Cryptography Image enhancement Content based retrieval Computer vision

作者机构:

  • [ 1 ] [Zhang, Pei]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing, China
  • [ 2 ] [Zhuo, Li]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing, China
  • [ 3 ] [Zhao, Yingdi]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing, China
  • [ 4 ] [Cheng, Bo]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing, China
  • [ 5 ] [Zhang, Jing]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing, China
  • [ 6 ] [Song, Xiaoqin]College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2013

卷: 1

页码: 783-787

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:546/3902999
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司