• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bai, Yu (Bai, Yu.) | Zhuo, Li (Zhuo, Li.) | Zhao, Ying Di (Zhao, Ying Di.) | Song, Xiaoqin (Song, Xiaoqin.)

收录:

EI Scopus

摘要:

The technology of near-duplicate video detection is currently a research hot spot in the field of multimedia information processing. It has great value in the areas such as large scale video information indexing and copyright protection. In the case of large-scale data, it is very important to ensure the accuracy of detection and robustness, in the meanwhile improving the processing speed of video copy detection. In this respect, a HVS(Human Visual System)-based video copy detection system is proposed in this paper. This system utilizes the visual attention model to extract the region of interest(ROI) in keyframes, which extracts the Surfgram feature only from the information in ROI, rather than all of the information in the keyframe, thus effectively reducing the amount of the data to process. The experimental results have shown that the proposed algorithm can effectively improve the speed of detection and perform good robustness against brightness changes, contrast changes, frame drops and Gaussian noise.

关键词:

Video signal processing Computer vision Behavioral research Image segmentation Gaussian noise (electronic) Multimedia systems Copyrights

作者机构:

  • [ 1 ] [Bai, Yu]Singal and Information Processing Laboratory, Beijing University of Technology, Beijing, China
  • [ 2 ] [Zhuo, Li]Singal and Information Processing Laboratory, Beijing University of Technology, Beijing, China
  • [ 3 ] [Zhao, Ying Di]Singal and Information Processing Laboratory, Beijing University of Technology, Beijing, China
  • [ 4 ] [Song, Xiaoqin]College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2013

卷: 1

页码: 792-795

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:442/3894402
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司