• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xiao, Yao (Xiao, Yao.) | Ruan, Xiaogang (Ruan, Xiaogang.) | Chai, Jie (Chai, Jie.) | Zhang, Xiaoping (Zhang, Xiaoping.) | Zhu, Xiaoqing (Zhu, Xiaoqing.)

收录:

EI Scopus SCIE PubMed

摘要:

Low-cost microelectro mechanical systems (MEMS)-based inertial measurement unit (IMU) measurements are usually affected by inaccurate scale factors, axis misalignments, and g-sensitivity errors. These errors may significantly influence the performance of visual-inertial methods. In this paper, we propose an online IMU self-calibration method for visual-inertial systems equipped with a low-cost inertial sensor. The goal of our method is to concurrently perform 3D pose estimation and online IMU calibration based on optimization methods in unknown environments without any external equipment. To achieve this goal, we firstly develop a novel preintegration method that can handle the IMU intrinsic parameters error propagation. Then, we frame IMU calibration problem into general factors so that we can easily integrate the factors into the current graph-based visual-inertial frameworks and jointly optimize the IMU intrinsic parameters as well as the system states in a big bundle. We evaluate the proposed method with a publicly available dataset. Experimental results verify that the proposed approach is able to accurately calibrate all the considered parameters in real time, leading to significant improvement of estimation precision of visual-inertial system (VINS) compared with the estimation results with offline precalibrated IMU measurements.

关键词:

visual odometry SLAM sensor fusion visual-inertial system IMU calibration

作者机构:

  • [ 1 ] [Xiao, Yao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Ruan, Xiaogang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Chai, Jie]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Zhu, Xiaoqing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Xiaoping]North China Univ Technol, Coll Elect & Control Engn, Beijing 100144, Peoples R China

通讯作者信息:

  • [Zhu, Xiaoqing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

SENSORS

ISSN: 1424-8220

年份: 2019

期: 7

卷: 19

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:166

JCR分区:2

被引次数:

WoS核心集被引频次: 23

SCOPUS被引频次: 27

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:291/4971989
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司