• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Shi, Ning (Shi, Ning.) | Gao, Chao (Gao, Chao.) | Zhang, Zili (Zhang, Zili.) | Zhong, Lu (Zhong, Lu.) | Huang, Jiajin (Huang, Jiajin.)

收录:

EI Scopus

摘要:

Social media records the pulse of social discourse and drives human behaviors in temporal and spatial dimensions, as well as the structural characteristics. These online contexts give us an opportunity to understand social perceptions of people in the context of certain events, and can help us improve disaster relief. Taking Twitter as data source, this paper quantitatively measures exogenous and endogenous social influences on collective behaviors in different events based on standard fluctuation scaling method. Different from existing studies utilizing manual keywords to denote events, we apply a clustering-based event analysis to identify the core event and its related episodes in a hashtag network. The statistical results show that exogenous factors drive the amount of information about an event and the endogenous factors play a major role in the propagation of hashtags. © Springer-Verlag 2013.

关键词:

Behavioral research Data mining Digital storage Disaster prevention Social networking (online)

作者机构:

  • [ 1 ] [Shi, Ning]College of Computer and Information Science, Southwest University, Chongqing, China
  • [ 2 ] [Gao, Chao]College of Computer and Information Science, Southwest University, Chongqing, China
  • [ 3 ] [Zhang, Zili]College of Computer and Information Science, Southwest University, Chongqing, China
  • [ 4 ] [Zhang, Zili]School of Information Technology, Deakin University, VIC 3217, Australia
  • [ 5 ] [Zhong, Lu]College of Computer and Information Science, Southwest University, Chongqing, China
  • [ 6 ] [Huang, Jiajin]International WIC Institute, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0302-9743

年份: 2013

期: PART 1

卷: 8346 LNAI

页码: 336-347

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:658/3578726
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司