• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Guo, Yi (Guo, Yi.) | Gao, Junbin (Gao, Junbin.) | Sun, Yanfeng (Sun, Yanfeng.) (学者:孙艳丰)

收录:

EI Scopus

摘要:

We propose a novel method called exemplar finder (EF) for spectral data endmember extraction problem, which is also known as blind unmixing in remote sensing community. Exemplar finder is based on data self reconstruction assuming that the bases (endmembers) generating the data exist in the given data set. The bases selection is fulfilled by minimising a l2/l1 norm on the reconstruction coefficients, which eliminates or suppresses irrelevant weights from non-exemplar samples. As a result, it is able to identify endmembers automatically. This algorithm can be further extended, for example, using different error structures and including rank operator. We test this method on semi-simulated hyperspectral data where ground truth is available. Exemplar finder successfully identifies endmembers, which is far better than some existing methods, especially when signal to noise ratio is high. © 2013 Springer-Verlag.

关键词:

Extraction Signal to noise ratio Data mining Remote sensing

作者机构:

  • [ 1 ] [Guo, Yi]CSIRO Division of Computational Informatics, North Ryde, NSW 1670, Australia
  • [ 2 ] [Gao, Junbin]School of Computing and Mathematics, Charles Sturt University, Bathurst, NSW 2795, Australia
  • [ 3 ] [Sun, Yanfeng]Beijing Municipal Key Lab. of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0302-9743

年份: 2013

期: PART 2

卷: 8347 LNAI

页码: 501-512

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:249/4607469
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司