• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cui, Lingli (Cui, Lingli.) (学者:崔玲丽) | Wang, Jialong (Wang, Jialong.) | Ma, Jianfeng (Ma, Jianfeng.)

收录:

EI Scopus SCIE

摘要:

The scale of structure element is especially important to obtain good filtering results in multiscale morphological filtering (MMF) method. In general, the optimal scale of structure element is set to be a fixed value in traditional morphological filter, therefore it is difficult to extract the fault feature from rolling bearing vibration signal effectively. A novel multiscale morphological filtering algorithm is proposed based on information-entropy threshold (IET-MMF) for early fault detection of rolling bearing. Compared with traditional MMF method, several optimal scales of structure elements are achieved according to the energy distribution characteristic of different vibration signals. The information entropy theory is applied to quantify the analyzed signals, and the optimal threshold of information entropy is obtained by iterative algorithm to ensure integrity of useful information. The simulation and rolling bearing experimental analysis results show that the IET-MMF method can extract fault features of vibration signals effectively.

关键词:

Rolling bearing Multiscale morphological filtering Information entropy Feature extraction

作者机构:

  • [ 1 ] [Cui, Lingli]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Jialong]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Ma, Jianfeng]Beijing Univ Technol, Beijing Engn Res Ctr Precis Measurement Technol &, Beijing 100124, Peoples R China

通讯作者信息:

  • 崔玲丽

    [Cui, Lingli]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY

ISSN: 1738-494X

年份: 2019

期: 4

卷: 33

页码: 1513-1522

1 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:3

被引次数:

WoS核心集被引频次: 22

SCOPUS被引频次: 23

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:438/4295767
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司