首页>成果

  • 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

[会议论文]

Fast local learning regularized nonnegative matrix factorization

分享
编辑 删除 报错

作者:

Jiang, Jiaojiao (Jiang, Jiaojiao.) | Zhang, Haibin (Zhang, Haibin.) (学者:张海斌) | Xue, Yi (Xue, Yi.)

收录:

EI Scopus

摘要:

Non-negative matrix factorization (NMF) is a recently developed technique for finding parts-based, linear representations of non-negative data. In this paper, we present a fast algorithm to solve local learning regularized nonnegative matrix factorization. We consider not only the local learning, but also its convergence speed. Experiments on many benchmark data sets demonstrate that the proposed method outperforms the local learning regularized NMF in convergence speed. © 2012 Springer-Verlag GmbH.

关键词:

Factorization Matrix algebra

作者机构:

  • [ 1 ] [Jiang, Jiaojiao]College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Zhang, Haibin]College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Xue, Yi]College of Applied Sciences, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关文章:

来源 :

ISSN: 1867-5662

年份: 2012

卷: 141 AISC

页码: 67-75

语种: 英文

被引次数:

WoS核心集被引频次: 0

近30日浏览量: 5

归属院系:

在线人数/总访问数:108/4516775
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司