• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Yang (Wang, Yang.) | Zhang, Yong (Zhang, Yong.) (学者:张勇) | Piao, Xinglin (Piao, Xinglin.) | Liu, Hao (Liu, Hao.) | Zhang, Ke (Zhang, Ke.)

收录:

EI Scopus SCIE

摘要:

Data missing remains a difficult and important problem in the transportation information system, which seriously restricts the application of the intelligent transportation system (ITS), dominatingly on traffic monitoring, e.g., traffic data collection, traffic state estimation, and traffic control. Numerous traffic data imputation methods had been proposed in the last decade. However, lacking of sufficient temporal variation characteristic analysis as well as spatial correlation measurements leads to limited completion precision, and poses a major challenge for an ITS. Leveraging the low-rank nature and the spatial-temporal correlation of traffic network data, this paper proposes a novel approach to reconstruct the missing traffic data based on low-rank matrix factorization, which elaborates the potential implications of the traffic matrix by decomposed factor matrices. To further exploit the temporal evolvement characteristics and the spatial similarity of road links, we design a time-series constraint and an adaptive Laplacian regularization spatial constraint to explore the local relationship with road links. The experimental results on six real-world traffic data sets show that our approach outperforms the other methods and can successfully reconstruct the road traffic data precisely for various structural loss modes.

关键词:

Traffic data reconstruction temporal variation characteristic matrix factorization adaptive spatial similarity

作者机构:

  • [ 1 ] [Wang, Yang]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Adv Innovat Ctr Future Internet Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Yong]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Adv Innovat Ctr Future Internet Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Piao, Xinglin]Dalian Univ Technol, Fac Elect Informat & Elect Engn, Coll Comp Sci & Technol, Dalian 116024, Peoples R China
  • [ 4 ] [Liu, Hao]Beijing Transportat Informat Ctr, Beijing 100161, Peoples R China
  • [ 5 ] [Zhang, Ke]Beijing Transportat Operat Coordinat Ctr, Beijing 100161, Peoples R China

通讯作者信息:

  • 张勇

    [Zhang, Yong]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Adv Innovat Ctr Future Internet Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

ISSN: 1524-9050

年份: 2019

期: 4

卷: 20

页码: 1531-1543

8 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:1

被引次数:

WoS核心集被引频次: 75

SCOPUS被引频次: 83

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

在线人数/总访问数:235/4299033
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司