• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Ren, Donghong (Ren, Donghong.) | Han, Honggui (Han, Honggui.) (学者:韩红桂)

收录:

EI Scopus

摘要:

A hierarchically neural network (HNN) is proposed in this paper. This HNN, contains two sub-neural networks, is used to predict the chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentrations. In the model the effluent COD of wastewater treatment is taken as the input of effluent BOD. The three layered RBF neural network is used in each sub-neural network. The training algorithm of the proposed HNN is simplified through the use of an adaptive computation algorithm (ACA). Meanwhile the results of simulations demonstrate that the new neural network can predict the key parameters accurately and the proposed HNN has a better performance than some other existing networks. © 2012 Springer-Verlag.

关键词:

Biochemical oxygen demand Effluents Effluent treatment Multilayer neural networks Network layers Neural networks Oxygen Wastewater treatment

作者机构:

  • [ 1 ] [Qiao, Junfei]College of Electronic and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 2 ] [Ren, Donghong]College of Electronic and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 3 ] [Han, Honggui]College of Electronic and Control Engineering, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 0302-9743

年份: 2012

期: PART 2

卷: 7368 LNCS

页码: 575-584

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:700/3647517
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司