• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Song, Zhi Kun (Song, Zhi Kun.) | Yang, Rui Zhe (Yang, Rui Zhe.) | Zhang, Li (Zhang, Li.) | Si, Peng Bo (Si, Peng Bo.) | Zhang, Yan Hua (Zhang, Yan Hua.) (学者:张延华)

收录:

EI Scopus

摘要:

In the wireless communication system, the traditional single model channel estimation method cannot tack the complex variability of the doubly selective channels. To solve this problem, in this paper, a multi-model channel estimation scheme is proposed. Based on basis expansion models (BEMs) of different kernel functions, the multiple models set for the doubly selective channel estimation is established, each of which is combined with the sub-block data tracking adaptive filtering estimator, and the optimal output is obtained by switching to the estimator having the minimum estimated error. The simulation results indicate that the proposed multi-model channel estimation algorithm can effectively track the complex variability of the channels and perform well in NMSE. © 2012 Springer-Verlag Berlin Heidelberg.

关键词:

Adaptive filtering Fading channels Adaptive filters Channel estimation

作者机构:

  • [ 1 ] [Song, Zhi Kun]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Yang, Rui Zhe]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Zhang, Li]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Si, Peng Bo]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 5 ] [Zhang, Yan Hua]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1865-0929

年份: 2012

期: PART 1

卷: 288 CCIS

页码: 515-525

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:953/4224744
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司