• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Atyabi, Adham (Atyabi, Adham.) | Luerssen, Martin H. (Luerssen, Martin H..) | Fitzgibbon, Sean P. (Fitzgibbon, Sean P..) | Powers, David M. W. (Powers, David M. W..)

收录:

EI Scopus

摘要:

The high dimensional nature of EEG data due to large electrode numbers and long task periods is one of the main challenges of studying EEG. Evolutionary alternatives to conventional dimension reduction methods exhibit the advantage of not requiring the entire recording sessions for operation. Particle Swarm Optimization (PSO) is an Evolutionary method that achieves performance through evaluation of several generations of possible solutions. This study investigates the feasibility of a 2 layer PSO structure for synchronous reduction of both electrode and task period dimensions using 4 motor imagery EEG data. The results indicate the potential of the proposed PSO paradigm for dimension reduction with insignificant losses in classification and the practical uses in subject transfer applications. © 2012 Springer-Verlag.

关键词:

Brain computer interface Classification (of information) Electrodes Electroencephalography Particle swarm optimization (PSO)

作者机构:

  • [ 1 ] [Atyabi, Adham]School of Computer Science, Engineering and Mathematics (CSEM), Flinders University, Australia
  • [ 2 ] [Luerssen, Martin H.]School of Computer Science, Engineering and Mathematics (CSEM), Flinders University, Australia
  • [ 3 ] [Fitzgibbon, Sean P.]School of Computer Science, Engineering and Mathematics (CSEM), Flinders University, Australia
  • [ 4 ] [Powers, David M. W.]School of Computer Science, Engineering and Mathematics (CSEM), Flinders University, Australia
  • [ 5 ] [Powers, David M. W.]Beijing Municipal Lab. for Multimedia and Intelligent Software, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 0302-9743

年份: 2012

卷: 7670 LNAI

页码: 220-231

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:922/3588213
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司