• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Hui-Qing (Zhang, Hui-Qing.) | Shi, Xiao-Wei (Shi, Xiao-Wei.) | Cao, Lu-Guang (Cao, Lu-Guang.) | Deng, Gui-Hua (Deng, Gui-Hua.)

收录:

EI Scopus

摘要:

The traditional indoor wireless location algorithm based on distance-loss model mostly need fit the parameters A and n of the wireless signal propagation model through experience or large amounts of experiment data, so they do not fully reflect the real volatile environment, also result in low accuracy. After lots of research and analysis of radio signal propagation model and the traditional indoor location algorithm, a new indoor location algorithm using BP neural network to fit the distance-loss model is proposed. From a number of distances between reference nodes and blind node, a more accurate six-point centroid algorithm is used to estimate the position of the blind node instead of using the traditional three-point centroid algorithm. Finally, the experiment result shows that the new algorithm improves the positioning accuracy and universality, compared with the traditional positioning algorithms. © 2012 Chinese Assoc of Automati.

关键词:

Backpropagation algorithms Location Neural networks Signal analysis Zigbee

作者机构:

  • [ 1 ] [Zhang, Hui-Qing]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Shi, Xiao-Wei]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Shi, Xiao-Wei]Beijing Division, China Nuclear Power Technology Research Institute, Beijing 100086, China
  • [ 4 ] [Cao, Lu-Guang]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 5 ] [Deng, Gui-Hua]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 1934-1768

年份: 2012

页码: 5460-5463

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:212/3605615
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司