• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bo, Yingchun (Bo, Yingchun.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Wang, Shuwei (Wang, Shuwei.)

收录:

EI Scopus

摘要:

Aim to solve the problems of structure design and parameters selection about conventional ESN, a small world property ESN (SWESN) is proposed in this paper. Neuron space growth algorithm is adopted to generate a physical network with small world topology on 2-D plane firstly, and then the nodes and the connections of the physical network are mapped into the neurons in reservoir of SWESN, Thus the dynamic neuron reservoir (DNR) in SWESN has small world characteristic. In addition, different typical neurons are adopted in the reservoir. The simulation experiments confirms that the SWESN generated by this method could create more abundant dynamic behavior than conventional ESN, and SWESN exceeds conventional ESN both at robustness and at anti-disturbance ability. © 2011 Springer-Verlag.

关键词:

Dynamics Neurons Robustness (control systems) Neural networks

作者机构:

  • [ 1 ] [Bo, Yingchun]College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Qiao, Junfei]College of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Wang, Shuwei]College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 0302-9743

年份: 2011

期: PART 1

卷: 6675 LNCS

页码: 52-59

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:254/4977648
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司