• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yan, Caifeng (Yan, Caifeng.) | Liu, Bo (Liu, Bo.) (学者:刘博)

收录:

EI Scopus

摘要:

A great number of dimensionality reduction methods are finally reduced to solving generalized eigenvector problems. Optimization techniques are promising ways to solve the parameter selection problems in these dimensionality reduction methods. The most important step in these optimization methods is to compute the objective function with respect to the parameter, which depends on computing the gradient and Hessian matrix of the resulted eigenvectors and eigenvalues. In this paper, we propose a novel method to compute the gradient of the eigenvalues, and then apply them to tune the parameter in the kernel principal component analysis. Experimental results on UCI data sets show that the new method outperforms the original algorithm, especially in time complexity. © 2011 IEEE.

关键词:

Eigenvalues and eigenfunctions Intelligent systems Optimization Principal component analysis

作者机构:

  • [ 1 ] [Yan, Caifeng]College of Computer Science, Beijing University of Technology, Beijing, China
  • [ 2 ] [Liu, Bo]College of Computer Science, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2011

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:86/3602173
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司