• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Li (Zhang, Li.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻) | Yang, Jiachun (Yang, Jiachun.)

收录:

EI Scopus SCIE PubMed

摘要:

Coal liquefaction wastewater (CLW) contains numerous toxic and biorefractory organics. A series of advanced treatment processes were designed to remove the dissolved organic matter (DOM) from CLW. Here, the reactivity and state of the DOM in the treatment train were studied in relation to its chemical composition by a Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis. Within an isobaric group, the raw CLW possessed a high average double-bond equivalent (DBEwa) and low H/C-wa values with the N- and S-containing compounds accounting for approximately 77% of the raw CLW, which represented lignin (73.6%) and condensed aromatic structures (19.8%). In addition, the flotation process removed some hydrophobic DOM compounds with highly unsaturated states, which were biorefractory compounds. Ozonation and catalytic oxidation processes preferentially removed the highly unsaturated compounds and produced more oxidized molecules. The biofiltration process impacted the organics composition by consuming oxygen-rich substances, whereas the anoxic/oxic (A/O) process converted the reactive compounds into newly formed compounds through the loss of hydrogen (unsaturation) from the original compounds. The membrane bioreactor (MBR) process was more efficient in removing the N-containing compounds with higher unsaturated states. The compounds resistant to the applied CLW treatment processes were characterized by lower molecular weights (approximately 250-350 Da), higher oxidation states (O/S > 6), numerous carboxylic groups, and non-biodegradable features. (C) 2018 Elsevier B.V. All rights reserved.

关键词:

Molecular-level characterization Dissolved organic matter Fourier transform ion cyclotron resonance Treatment train Coal liquefaction wastewater

作者机构:

  • [ 1 ] [Zhang, Li]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [Yang, Jiachun]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

通讯作者信息:

  • 彭永臻

    [Zhang, Li]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China;;[Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

SCIENCE OF THE TOTAL ENVIRONMENT

ISSN: 0048-9697

年份: 2019

卷: 658

页码: 1334-1343

9 . 8 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:167

JCR分区:1

被引次数:

WoS核心集被引频次: 24

SCOPUS被引频次: 23

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:1063/4290688
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司