• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Dong, Meng (Dong, Meng.) | Liu, Yong Dong (Liu, Yong Dong.) (学者:刘永东) | Zhong, Rugang (Zhong, Rugang.) (学者:钟儒刚)

收录:

EI Scopus SCIE PubMed

摘要:

N-nitrosodimethylamine (NDMA) as the most frequently detected disinfection by-product has aroused widespread concern due to its unusually high carcinogenicity, however, there is still limited understanding of its formation mechanisms. In this study, the formation mechanisms of NDMA from some typical hydrazines and hydrazones with high NDMA conversion yields (60% similar to 90%) during ozonation, i.e., unsymmetrical dimethylhydrazine (UDMH), 1-formyl-2,2-dimethylhydrazine (FDMH), formaldehyde dimethylhydrazone (FDH) and acetone dimethylhydrazone (ADMH), were investigated by using DFT method with the M05 functional. A new NDMA formation mechanism from hydrazines during ozonation was proposed, in which the initial step is hydrogen abstraction rather than previously reported oxygen addition. For hydrazones, the C atom of the-N = C moiety in hydrazones is preferred to be attacked by ozone to generate N,N-dimethylaminonitrene (DMAN), which is an important intermediate in NDMA formation during ozonation. Moreover, the reactivity order of the following H atoms in hydrogen/hydride ion abstraction (HA) by ozone is -NH2 >-N(CH3)(2) >-CO-NH similar to = C(CH3)(2) > = CH-. Additionally, formation pathways of some experimentally detected compounds, i.e., HOOOH, HOOH and HCOH, in the ozonation of hydrazine were elucidated in this study. The results are expected to expand our understanding of NDMA formation mechanisms and ozone reaction characteristics.

关键词:

DFT Hydrazines Hydrazones NDMA Ozonation

作者机构:

  • [ 1 ] [Dong, Meng]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing Key Lab Environm & Viral Oncol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Yong Dong]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing Key Lab Environm & Viral Oncol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhong, Rugang]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing Key Lab Environm & Viral Oncol, Beijing 100124, Peoples R China

通讯作者信息:

  • 刘永东

    [Liu, Yong Dong]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing Key Lab Environm & Viral Oncol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF HAZARDOUS MATERIALS

ISSN: 0304-3894

年份: 2019

卷: 366

页码: 370-377

1 3 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:52

JCR分区:1

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:388/3763921
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司