收录:
摘要:
In industrial manufacturing, most batch processes are multi-phase and uneven-length batch processes in nature, phase-based approaches are intuitively well suited for batch process monitoring and quality prediction. In this paper, a new strategy is proposed using multi-phase dynamic partial least squares (DPLS) for batch processes monitoring and quality prediction. Firstly, batch process data was automatically divided into several phases using Gaussian mixture model (GMM) clustering arithmetic. Then runtorun variations among different instances of a phase are synchronized by using dynamic time warping (DTW). Finally, multi-phase DPLS model is built between each phase and the quality variables. The proposed method easily handles the following problems: (1) static single model; (2) process and its model do not match; (3) linear method may not be efficient in compressing and extracting dynamic nonlinear process data. The idea and algorithm are illustrated with respect to the typical data collected from a benchmark simulation of fed-batch penicillin fermentation production. The simulation results demonstrate the effectiveness of the proposed method in comparison to original DPLS. © 2011 Chinese Assoc of Automati.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
年份: 2011
页码: 5258-5263
语种: 英文
归属院系: